Lighting-fast introduction to Python

Szymon Stoma (from Falko Krause’s manuscript)

October 24, 2010

1 Getting Started

1.1 Interactive Mode

One of the features that makes Python easy to learn
is its ability to function as a command line inter-
preter. In the command line interpreter (or Python
interactive shell), you can type in a command and
Python will instantly respond with the result. You
can invoke the interactive shell by calling Python
without any arguments.

$ python

Python 2.5.2 (r252:60911, May 7 2008, 15:19:09)

[GCC 4.2.3 (Ubuntu 4.2.3-2ubuntu7)] on linux2

Type "help", "copyright", "credits" or "license" for ...

...more information.
>>>

After starting up, Python prompts you for the next
command with the primary prompt >>>.

For continuation lines, it prompts with the sec-
ondary prompt

>>> myflag = 1

>>> if myflag:
print "Be careful not to fall off!"

Be careful not to fall off!

If you read the next Section (2) you will understand
the example in detail.

IPython If you are serious about learning
Python, you will have to get IPython. IPython is
an extension of the interactive shell, it “is an inter-
active shell for the Python programming language
that offers [...] additional shell syntax, code high-
lighting, and tab completion.” (Wikipedia). This
means that your commands will be displayed in nice
colors (unfortunately not in this script), that you
can press the tab key or the “up” key to autocom-
plete e.g. variable names (this will be referred to
as <TAB> and <UP>) and that you will be able to
access the Python documentation instantly.

2 The Basics

Before we start to actually use Python, two impor-
tant concepts should be explained.

Duck Typing
This style of dynamic typing (assigning a
datatype to a variable) is widespread among
current popular interpreted languages. Its
motto is “If it walks like a duck and quacks like
a duck, I would call it a duck.”, in Python this
means that you can advise an integer number
to a variable and the variable will be of type
integer (without ever declaring this fact explic-

itly).

Indentation
Indentation determines the context of com-
mands. This makes Python highly read-
able and rids it of most of the “swearword”
symbols ($#) } () that other languages depend
on. The actual use will be demonstrated in this
tutorial many times.

2.1 Datatypes

Numbers If you start the Python interactive
shell (or IPython), you can use it as a calculator.
Just type some integer numbers (int) with some
common mathematical symbols.

>>> 2+2

4

>>> (50-5%6)/4
5

If you want to “save” your numbers you can assign
them to a variable using the = sign. Now you can
reuse them for complicated calculations like the one
below.

>>> width = 20

>>> height = 5%9
>>> width * height
900

Of course integer numbers are not enough. In sci-
ence, we need floating point numbers (float).

>>> 3 x 3.75 / 1.5
7.5

You can convert an int into a float - just like that.

>>> float(width)
20.0

This kind of type casting works for most datatypes
in Python (!). Python also knows about complex

numbers and has functions like rounding (round())
etc. built in and ready to use.

Strings String can be expressed in several ways,
here is one:

>>> ’spam eggs’
’spam eggs’

Enclosing a string in single quotes (?) will not inter-
pret the contents, this means a newline ’\n’ will
return just the characters in the string \n. Dou-
ble quoted strings are interpreted and will convert
the newline character(s) into a new line. You could
write a string that spans multiple lines like that:

>>> hello = "This is a rather long string containing\n\
. several lines of text just as you would do in C.\n\
Note that whitespace at the beginning of the line...
. is\
significant."
>>>
>>> print hello
This is a rather long string containing
several lines of text just as you would do in C.
Note that whitespace at the beginning of the line is...
. significant.

At the end of each line a \ declares that the same
command continues on the next line. But you could
also enclose your string in triple quotes (’’’ or

Hll").

>>> hello = ’’’This is a rather long string containing

. several lines of text just as you would do in C.

Note that whitespace at the beginning of the line...

... 18

. significant.’’’
>>> print hello
This is a rather long string containing
several lines of text just as you would do in C.

Note that whitespace at the beginning of the line is

significant.

Concatenating strings is easy.

>>> word = ’Help’ + ’A’
>>> word
’HelpA’

In TPython you can see all the string functions by
tabbing them

In [1]: word = ’Help’ + ’A’

In [2]: word

Out[2]: ’HelpA’

In [3]: word.<TAB>

str.__add__ str.__hash__ str

.__subclasses__ str.lower

str.__base__ str.__init__ str
...__weakrefoffset__ str.lstrip

str.__bases__ str.__itemsize__ str.capitalize ...
. str.mro

str.__basicsize__ str.__le__ str.center ...
. str.partition

str.__call__ str.__len__ str.count ...
e str.replace

str.__class__ str.__1t__ str.decode ...
. str.rfind

str.__cmp__ str.__mod__ str.encode ...
e str.rindex

str.__contains__ str.__module__ str.endswith ...
- str.rjust

str.__delattr__ str.__mro__ str.expandtabs ...

str.rpartition

str.__dict__ str.__mul__ str.find ...
e str.rsplit
str.__dictoffset str.__name_ str.index ...

. str.rstrip
str.

__doc__ str.__ne__ str.isalnum ...
e str.split
str.__eq__ str.__new__ str.isalpha ...
e str.splitlines
str.__flags__ str.__reduce__ str.isdigit ...
e str.startswith
str.__ge__ str.__reduce_ex__ str.islower ...
str.strip

str.__getattribute__ str.__repr__
e str.swapcase
str.__getitem__ str.__rmod__
e str.title
str.__getnewargs__ str.__rmul__
e str.translate
str.__getslice__

str.isspace ...
str.istitle ...

str.isupper ...

str.__setattr__ str.join ...
e str.upper
str.__gt__ str.__str__ str.ljust ...
str.zfill

In [4]: word.upper()
Out[4]: ’HELPA’

By the way, if you want to get your last command
back, you can press “up” and it will autocomplete
your command (even if it you closed and reopened
IPython in between)

In [4] :wor<UP>

Lists Python has a variety of list types
The most basic type is the tuple.

>>> t = 12345, 54321, ’hello!’

>>> t

(12345, 54321, ’hello!’)

>>> # Tuples may be nested:
.u=1t, (1, 2, 3, 4, 5)

>>> u

((12345, 54321,

’hello!’), (1, 2, 3, 4, 5))

A normal list is called 1ist. This is the closest
to what is known as “array” in other programming
languages.

>>> 1 =
>>> 1
[’spam’, ’eggs’, 100, 1234]

[’spam’, ’eggs’, 100, 1234]

A 1list is not very practical if you need to find
one of its members. That’s why Python has the
datatype set. The set internally uses a hash func-
tion to index its values. In contrast to a list
the set will not store duplicate entries. On a set
you can use the in command to check if a mem-
ber exists. You can also use functions like union,
difference etc. to create new sets.

>>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’...
...orange’, ’banana’]

>>> s = set(basket) # create a set without ...
...duplicates

>>> s

set([’orange’, ’pear’, ’apple’, ’banana’])

>>> ’orange’ in s # fast membership testing

True

>>> ’crabgrass’ in s

False

Very similar to a set is the Dictionary (dict). It
contains key / value pairs ({key:value key:value}).

Basically the keys form a set that has for each
entry a value attached.

>>> d = {’jannis’: 4098, ’wolf’: 4139}

>>> d[’guido’] = 4127

>>> d

{’wolf’: 4139, ’guido’: 4127, ’jannis’: 4098}
>>> d[’jannis’]

4098

In the example above values are added/extracted
by specifying their key in square brackets.

In lists and tuples, element positions are the
“keys”.

>>>t[0]
12345

And not to forget, str is a list type too!

A very convenient way to get subsets from tuples,
lists and strs is to specify start and end posi-
tions separated by a colon in the square brackets
(list[start:end]).

>>> word = ’WOOT this Python lesson is awesome’
>>> word.split()
[’WOO0T’, ’this’, ’Python’, ’lesson’, ’is’, ’awesome’]

>>> word[10:17]+word.split () [4]+word[-7:]
’Python is awesome’

Leaving start or stop values empty is a shortcut to
the very start of the list or respectively the very end
of the list. Negative values are subtracted from the
length of the list (-1 is thus the last element of the
list).

Other Important Datatypes To express
boolean values Python provides the datatype
bool. Its values are True and False. Sequences
can act as booleans, that is, an empty sequence
(e.g. [1) acts as False and a filled sequence
(e.g. [’a’,’b’]) acts as True. The int O is
also eqivalent to False - all other integers are
equivalent to True. The same applies to float.

The datatype None is frequently used to represent
the absence of a value. It has only one value: None.

2.2 Control Flow

Due to the lack of creativity the introduction to
control flow will start with the classic example of
the Fibonacci series.

while Statements There are many possible im-
plementations of the Fibonacci series, this one uses
the while statement.

>>> a, b=0, 1

>>> while b < 1000:
print b,
a, b =b, atb

112358 13 21 34 55 89 144 233 377 610 987

The first line shows an example of a multiple
assignment. The while loop on the second line

executes the indented code below as long as the
boolean (bool) statement follwing the while
evaluates to True. The comma at the end of the
third line will prevent print to add a new line
every time it is called.

if Statements Also if statements take a bool
as input. To create a chain of if statements that
executes different commands depending on multi-
ple conditions, the elif statement (short for “else
if”) can be used. In the following example, chained
“if” statements process the users input. (The user
enters the 42 in this example.)

>>> x = int(raw_input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
x=0
. print ’Negative changed to zero’
. elif x == 0:
c.. print ’Zero’
. elif x == 1:
print ’Single’
. else:
print ’More’

More

for Statements Here is one of the strengths
of Python. Looping through lists is very simple
and intuitive. If you programmed in other lan-
guages before that do not have similar “for” loops,
you might need a while to adapt to the fact that
you can iterate over the items of any sequence
(str,list,tuple,set) without having to deal with
indices.

>>> # Measure some strings:
. a= [’cat’, ’window’, ’defenestrate’]
>>> for x in a:
print x, len(x)
cat 3
window 6
defenestrate 12

The range () Function Generating lists of num-
bers (e.g. list indices) is also easy.

>>> range(10)

o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(5, 10)

[5, 6, 7, 8, 9]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(-10, -100, -30)
[-10, -40, -70]

Now you can show the index number of the list
entry, if you really need to.
>>> a = [’Mary’, ’had’, ’a’, ’little’, ’lamb’]
>>> for i in range(len(a)):
print i, ali]
0 Mary
1 had
2 a

3 little
4 lamb

The example above is rather complicated. In actual
source-code, you would write
>>> for i,b in enumerate(a):
print i, b
0 Mary
1 had
2 a

3 little
4 lamb

For looping trough dictionaries look into the func-
tions keys(), values() and iteritems(). They
are part of the dict class. Remember that
in IPython, you can easily find them by typing
mydict.<TAB>.

break and continue Statements, and else
Clauses on Loops You can break out of the
smallest enclosing loop - or just skip to the next
iteration of the loop with continue. A very con-
venient feature is that you can execute code in an
else statement that follows a loop. It is executed
when the loop terminates through exhaustion of the
list (with for) or when the condition becomes false
(with while).
>>> for n in range(2, 10):
for x in range(2, n):
if n % x ==
print n,
break
else:# loop fell through without finding a factor
if n==3:

continue
print n, ’is a prime number’

’equals’, x, ’*’, n/x

is a prime number
equals 2 * 2
is a prime number
equals 2 * 3
is a prime number
equals 2 * 4
equals 3 * 3

©o0o~NOOSN -

pass Statements The laziest statement is pass,
it will do nothing. This is very helpful if you write
the structure of your code first and fill the actual
commands later.

>>> x = int(raw_input("Please enter an integer: "))
Please enter an integer: 10
>>> if x < 0:
.. pass
. elif x == 42:
. pass #TODO must fill answer to the ultimate ...
...question of life, the universe, and everything here ..
...later
. else:
print ’More’

More

2.3 Functions

Functions are defined with def followed by the
function name followed by round brackets that con-
tain the arguments passed to the function. A func-
tion can return values by using return.

>>> def tell_miau(who):
return who+" told Miauuuuu"

>>> print tell_miau(’Jannis’)
Jannis told Miauuuuu

Default Argument Values and Keyword Ar-
guments You can assign default values to the ar-
guments passed to a function. In addition to that,
you can use an argument name as a keyword to
pass this specific argument. This is very useful for
functions that have many arguments with default
values of which you only need to use a few.

>>> def tell_compliment(who,person="Falko",reply="Thanks...
")
return who+’ told: ’+person+" you have beautiful ...
...eyes!\n"+persont+" replied: "+reply

>>> print tell_compliment("Jannis","Eve")
Jannis told: Eva you have beautiful eyes!

Eve replied: Thanks

>>> print tell_compliment("Timo",reply="Eeee?")
Timo told: Falko you have beautiful eyes!

Falko replied: Eeee?

What amazed me in Python is that functions are
not very different than other datatypes.

>>> kmplmnt=tell_compliment
>>> print kmplmnt("Falko")

Documentation Strings Python has a built in
method of documenting your source-code.

>>> def my_function():
"""Do mothing, but document it.

No, really, it doesn’t do anything.

nun

pass

>>> print my_function.__doc_
Do nothing, but document it.

No, really, it doesn’t do anything.

IPython uses this documentation in a very conve-
nient way
def my_function():

’?? the same here ’’’
pass

In [1]:

In [2]: my_function?
Type: function
Base Class: <type ’function’>
String Form: <function my_function at 0x83f4f7c>
Namespace: Interactive
File: /home/select/MPG/SBML/semanticSBML/trunk/<. ..
...ipython console>
Definition: my_function()
Docstring:
the same here

In [3]: str?

Type:

Base Class:

String Form:

Namespace:

Docstring:
str(object) -> string

type

<type ’type’>
<type ’str’>
Python builtin

Return a nice string representation of the object.
If the argument is a string, the return value is the...
. same object.

3 More on Lists

list.append(x)
Add an item to the end of the list; equivalent

to a[len(a):] = [x].

list.extend(L)
Extend the list by appending all the items in
the given list; equivalent to a[len(a):] = L.

list.insert(i, x)
Insert an item at a given position. The first
argument is the index of the element before
which to insert, so a.insert (0, x) inserts at
the front of the list, and a.insert(len(a),
x) is equivalent to a.append(x).

list.remove(x)
Remove the first item from the list whose value
is x. It is an error if there is no such item.

list.pop(i)
Remove the item at the given position in the
list, and return it. If no index is specified,
a.pop() removes and returns the last item in
the list.

list.index(x)
Return the index in the list of the first item
whose value is x. It is an error if there is no
such item.

list.count(x)
Return the number of times x appears in the
list.

list.sort()
Sort the items of the list, in place.

list.reverse()
Reverse the elements of the list, in place.

Using Lists as Stacks and Queues
the functions above

is easy with

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack

[3, 4, 5, 6]

>>> stack.pop()

6

>>> queue = ["Eric", "John", "Michael"]

>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.pop(0)

’Eric’

>>> queue.pop (0)

’John’

>>> queue

[’Michael’, ’Terry’, ’Graham’]

List Comprehensions The “old-school”

method of manipulating lists in loops is hardly
ever used in Python because of its list comprehen-
sions feature. It enables you to manipulate a list
on the fly. Once you get used to this feature you
will never want to miss it again.

>>> freshfruit =
...fruit ’]

>>> [weapon.strip() for weapon in freshfruit]

[’banana’, ’loganberry’, ’passion fruit’]

>>> vec = [2, 4, 6]

>>> [3xx for x in vec]

[6, 12, 18]

>>> [3*x for x in vec if x > 3]

[12, 18]

[’ banana’, ’ loganberry ’, ’passion ...

4 Modules

A file containing Python source-code is called a
module.

Before we continue you should know that at this
point you will need a text editor. You could
use the default text editor of your operating sys-
tem but then you will miss alot of nice fea-
tures like text highlighting, tab-completion, smart-
indentation and syntax checking. For the beginning
you can try IDLE (installs by default with Python
on Widows) and later on switch to a more advanced
IDE (Integrated development environment).

If you write the module fibo.py (contents below)

wnn

Fibonacci numbers module
win

def fib(n): # write Fibonaccti series up to n
a, b=0, 1
while b < n:
print b,
a, b = b, atb

def fib2(n): # return Fibonaccti series up to n
result = []
a, b=0, 1
while b < n:
result.append(b)
a, b =Db, atb
return result

you can import it into the interactive shell (or
another module) by calling import modulename
(without the .py extension) if the file is in the same
folder or Pythons search path. By adding a . to
the module name you can access the functions of
the module.

>>> import fibo

>>> fibo.£fib(1000)

112358 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo.__name__

’fibo’

If you change your module you will have to reload
it to see the changes in the interactive shell

>>> reload(fibo)
<module ’fibo’ from ’fibo.pyc’>

Executing Modules as Scripts
execute your module with

If you want to

$ python fibo.py <arguments>

you can add
if __name__ == " "
import sys

fib(int (sys.argv[1]))

__main__

to your fibo.py file. The first line evaluates
to True if the file is executed by the Python
interpreter. The second line imports a module
called sys. This module enables you to read ar-
gument that the user passed to the script with
sys.argv[] (in this example the first argument
that was passed).

$ python fibo.py 50
11235813 21 34

In Linux, you can make your file directly executable
by adding as first line

#! /usr/bin/env python

and setting the file as executable

$ chmod +x fibo.py

$ mv fibo.py fibo

$./fibo 50
11235813 21 34

In Linux terms, you would now refer to the file as a
Python script. If you move this script to /usr/bin,
it will be in your global search path and can be ex-
ecuted from any location of your filesystem. If you
are using Linux, you have most likely already used
a couple of Python scripts without ever noticing it.

4.1 Standard Modules

Python comes with a library of standard modules.
Some of them will be introduced in Section 8. One
of the most important modules is sys. One of its
functions was just introduced. Besides argument
parsing, it has functions for e.g. exiting a script
sys.exit(). Remember you can find out about
that in IPython by typing sys.<TAB>.

4.2 Packages

A folder containing modules is called a package.
This sentence is good to remember but only really
true if the folder contains a file called __init__.py.
A package can of course also consist of subpackages.
Here is an example:

sound/
__init__.py
.. .package
formats/
...conversions
__init__.py
wavread.py
wavwrite.py

Top-level package
Initialize the sound ...

Subpackage for file format ...

effects/
...effects
__init__.py
echo.py
surround.py
reverse.py

Subpackage for sound ...

filters/
__init__.py
equalizer.py
vocoder.py
karaoke.py

Subpackage for filters

strange/
__init__.py
fibo.py

Subpackage for fibonacci

Just like modules packages can be imported. You
can import a specific subpackage by using toppack-
age . subpackage.

>>>import sound.strange.fibo
>>> sound.strange.fibo.fib(1000)
112358 13 21 34 55 89 144 233 377 610 987

5 Input and Output

5.1 “0Old” string formatting

There are newer and fancier ways to obtain nicely
formatted strings in Python, but I chose this one
since in my opinion it is the shortest and easiest
method of string formatting. A formatted string
is a string containing %<someletter>. The string
is followed by a % and has as many variables/-
values (in a tuple) as % signs in the string. The
<someletter> determines how the variables/values
are interpreted. A Y%<number><someletter> can
determine the precision of a number or the number
of filling space characters for a string.

>>> b = ’hello’
>>> a =1
>>> ¢ = "world"

>>> print ’%s %s %s’%h(b,c,a)
hello world !
>>> print ’%20s’%b
hello
>>> print ’%-20s%s’%(b,a)
hello !
>>> x = 1.23456789
>>> print ’%e | %f | %g’ % (x, x, %)
1.234568e+00 | 1.234568 | 1.23457
>>> print ’%4d’%10

10
>>> print ’%.4d’%10
0010

5.2 Reading and Writing Files

When you open a file with the command open, you
have to define what you want to do with the file,
e.g. ’r’ read, ’w’ write, *rw’ read and write, ’a’
append (like write, but append to the end of the
file). The function will return a file handle to you.
On the file handle you can do operations like read-
ing a file or writing contents into the file.

>>> f=open(’/etc/issue’, ’r’)

>>> f.read()

’Ubuntu 8.10 \\n \\1\n\n’
>>> f.close()

If you are done with the file operations, it is al-
ways wise to close the filehandle. On line two, we
use the function read to read the whole file into a
string; the readline function will read the file line
by line; but I especially like readlines, it will read
the whole file into a 1list where each list element
is a line of text.

>>> for line in open(’/etc/passwd’, ’r’).readlines():

- print ’Length: %-5s Content: %s’%(len(line),line...
-1

Length: 32 Content: root:x:0:0:root:/root:/bin/bash

Length: 38 Content: daemon:x:1:1:daemon:/usr/sbin:/bin...
.../sh

Length: 27 Content: bin:x:2:2:bin:/bin:/bin/sh

Length: 27 Content: sys:x:3:3:sys:/dev:/bin/sh

5.3 The pickle Module

“Serialization is the process of saving an object onto
a storage medium [...] such as a file” (Wikipedia).
This module puts serialization at your fingertips.

>>> import pickle

>>> x=[(’man’,1),(2,’this is getting’),{True:’so very’,...
. .False:’complicated’}]

>>> fl=open(’test.picklefile’,’w’)

>>> pickle.dump(x, f£1)

>>> f1.close()

>>> f2=open(’test.picklefile’,’r’)

>>> x = pickle.load(£2)

>>> x

[(’man’, 1), (2, ’this is getting’), {False: ’...
...complicated’, True: ’so very’}]

6 Errors and Exceptions

Up until now we typed everything correctly into the
interactive shell, but this time we won’t!

>>> while True print ’Hello world’
File "<stdin>", line 1, in 7
while True print ’Hello world’

SyntaxError: invalid syntax

In the example, the error is detected at the
keyword print, since a colon (’’) is missing before
it. File name and line number are printed, so you
know where to look in case the input came from a
script.

Exceptions Have a look at some exceptions you
could encounter in your Python programming ad-
ventures
>>> 10 * (1/0)
Traceback (most recent call last):
File "<stdin>", line 1, in 7
ZeroDivisionError: integer division or modulo by zero
>>> 4 + spam*3
Traceback (most recent call last):
File "<stdin>", line 1, in 7
NameError: name ’spam’ is not defined
>>> 27 + 2
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: cannot concatenate ’str’ and ’int’ objects

The last line of each exception tells you what is
wrong. If one of these exception is raised inside a
Python script the script will terminate. This is not
always desirable, read on to see how to prevent this.

>>> while True:

try:
x = int(raw_input("Please enter a number: "))
break

except ValueError:
print "Oops! That was no valid number. Try ...

...again..."

else:

print "good boy!"

If code in between the try / except statements
will raise the exception specified behind except
(ValueError), this exception will be caught and
the code enclosed by the except statement will be
executed. If no exceptions are raised, the except
will be ignored. An optional else can be added
to define commands that are executed in case no
exception is raised.

Raising Exceptions You can also raise excep-
tions whenever you feel like it.

>>> raise Exception(’spam’, ’eggs’)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
Exception: (’spam’, ’eggs’)

Each exception is a class that inherits from the
Exception base class. For now we can just raise
a basic Exception. Before we can create our own
exceptions we should understand how classes work
in Python. At the end of the Section 7 I will show
you how to create a custom exception.

7 Classes

Classes are the essential concept of object-oriented
programming. The realization of this concept in
Python is (as you might already expect) easy to
use.

Class Definition Syntax Let’s define a class.

>>> class MyLameClass:
pass

Class Objects This was too easy, right? Let’s
create a more sophisticated class.
>>> class Animal:
’?’ This is an animal ’’’
nana="nana"
def __init__(self,number_of_legs):
self.legs=number_of_legs
def saySomething(self):

L. print "I am an Animal, I have %s legs" % self....
...legs

Just like functions and modules, classes can have
documentation strings.

Class objects support two kinds of operations:
attribute references and instantiation.

Attribute references use the standard syntax used
for attribute references in Python: obj.name

>>> Animal.nana
"nana"

Class instantiation uses the function notation. Just
pretend that the class object is a function that re-
turns a new instance of the class.

>>> my_pet = Animal(4)

The command above created a new instance of the
class that was assigned to the local variable my_pet.
When a class is instantiated, the special function
_init__Q) is called. If you know other program-
ming languages, this function is known as construc-
tor. The Python “constructor” is optional.

Class instances have instance variables and instance
functions (methods), you will recognize them by
the variable self. In our example, we have cre-
ated the instance variable legs and the method
saySomething(). In general, you will only need
instance variables and methods if you work with
a class (along local variables and functions for the
use within the instance functions). You can use a
method by writing obj.method()

>>> my_pet.saySomething()
I am an Animal, I have 4 legs

7.1 Random Remarks

self The variable self is named “self” because of
convention, there is no special meaning behind it.
It is however important to follow this convention
if you want to use e.g. an external source code
documentation generator or if you want to give your
source code to other programmers

Just Do It Any function object that is a class at-
tribute defines a method for instances of that class.
It is not necessary that the function definition is
textually enclosed in the class definition: assigning
a function object to a local variable in the class is
also ok. For example:

>>> # Function defined outside the class
. def fi(self, x, y):

return min(x, x+y)

>>> class C:

f =f1
def g(self):

return ’hello world’
h=g

You can also add instance variables and methods
to a class instance later on.

>>> ¢=C()

>>> c.new=’oh interesting’
>>> c.new

’oh interesting’

>>>

7.2 Inheritance

A key feature of object-orientation and classes is
inheritance, here is an example

>>> class Cat(Animal):
’?’This is the animal cat’’’
def __init__(self):
. ’?’cats always have 4 legs,
...intttalized in this function’’’
Animal.__init__(self,4)
def petTheCat(self):
print "purrrrrr"

this s ...

>>> snuggles=Cat ()

>>> snuggles.saySomething()

I am an Animal, I have 4 legs
>>> snuggles.petTheCat ()
purrrrrr

>>>

It is also possible to have a multiple inheritance
in Python (class DerivedClassName(Basel,
Base2, Base3d)).

7.3 Private Variables

To make a variable private you add two underscores
before the variable name e.g. self.__furr. Private
variables (and methods) can only be accessed from
within the class (or module) they are defined in.

7.4 0Odds and Ends

You can (ab)use classes for data storage.

>>> class MyData:
pass

>>> store=MyData()
>>> store.height=200
>>> store.width=400

7.5 Exceptions Are Classes Too

Like I promised before, I will now show you how to
create a custom exception.

>>> class MyError(Exception):

def __init__(self, value):
self.value = value
__str__(self):
return repr(self.value)

def

>>> try:
raise MyError(2x2)
. except MyError as e:
print ’My exception occurred, value:’, e.value
My exception occurred, value: 4
>>> raise MyError, ’oops!’
Traceback (most recent call last):
File "<stdin>", line 1, in 7
__main__.MyError: ’oops!’

8 A Very Brief Tour of the
Standard Library

8.1 Operating System Interface

The os module provides dozens of functions for in-
teracting with the operating system:

>>> import os

>>> os.system(’time 0:02’)

0

>>> os.getcwd()

’C:\\Python26’

>>> os.chdir(’/server/accesslogs’)

>>> os.path.exists(’/etc/issue’) # check if a file or ..
...folder exists

True

Return the current working directory

8.2 Optparser

The optparse module enables you to write a simple
interface to your Python script. The following file
will be saved as test.py and set to be executable
(see Section 4).

#!1/usr/bin/env python
import optparse,sys

if __name__ == ’__main__’:
parser = optparse.OptionParser()
parser.add_option("—i", "--infile", dest="infile"...
., help="Input file for this script")
parser.add_option("-o", "--outfile", dest="...
...outfile", default="", help="Output file for ...
...this script")

(options,args) = parser.parse_args()

if not options.infile and not options.outfile:
print "\nNo input file or output file ...
...specified\n"
parser.print_help()
sys.exit ()
else:
contents=open(options.infile,’r’).read()
open(options.outfile,’w’) .write(contents+’...
...\nthis is new content’)

You can now execute your script and it will give you
a nicely structured output that explains its usage.

$./test.py
No input file or output file specified

Usage: test.py [options]

Options:
-h, --help show this help message and exit
-i INFILE, --infile=INFILE
Input file for this script
—-o OUTFILE, --outfile=0UTFILE

Output file for this script
$./test.py -h
Usage: test.py [options]

Options:
-h, --help show this help message and exit
-i INFILE, --infile=INFILE
Input file for this script
-o OUTFILE, --outfile=0UTFILE

Output file for this script
$ echo "hello world">myfile.txt
$ cat myfile.txt
hello world
$./test.py -i myfile.txt -o myoutfile.txt
$ cat myoutfile.txt
hello world

this is new content

$

9 Exercises

The file ex0l.py is attached to this document.
Please fill the function bodies, so the given prob-
lems are solved (for each problem verify if your so-
lution pass tests included in the file):

A. match_ends
Given a list of strings, return the count of the number...
. of

strings where the string length is 2 or more and the ...
... first

and last chars of the string are the same.

Note: python does mot have a ++ operator, but += works.

def match_ends(words):
+++your code here+++

return
B. front_z
Given a list of strings, return a list with the strings
in sorted order, except group all the strings that ...

...begin with ’z’ first.
e.g. [’miz’, ’zyz’, ’apple’,
...ytelds
[’zanadu’, ’zyz’, ’aardvark’, ’apple’, ’miz’]
Hint: this can be done by making 2 lists and sorting ...
...each of them
before combining them.
def front_x(words):
+++your code here+++
return

‘zanadu’, ’aardvark’] ...

W

C. sort_last

Given a list of non-empty tuples, return a list sorted ...

...1in increasing
order by the last element in each tuple.
#e.g. [(1, 7, (1, 3), (3, 4, 5), (2, 2)] yields
#[(2, 2, (1, 3), (3, 4, 5), (1, NI

Hint: use a custom key= function to extract the last ...

...element form each tuple.
def sort_last(tuples):

+++your code here+++

return

D. Given a list
all adjacen
...element,
so [1, 2, 2, 3]
list or
modify the passed in list.
def remove_adjacent (nums) :
+++your code here+++

return

of numbers, return a list where

A. donuts
Given an int count of a number of donuts, return a ...
...string

of the form ’Number of donuts: <count>’, where <count> ...

...1s the number

passed in. However, if the count ¢s 10 or more, then ...

...use the word ’many’
instead of the actual count.
So donuts(5) returns ’Number of donuts: 5°
and donuts(23) returns ’Number of donuts: many’
def donuts(count):
+++your code here+++
return

B. both_ends
Given a string s, return a string made of the first 2
and the last 2 chars of the original string,
so ’spring’ yields ’spng’. However, if the string ...
...length
is less than 2, return instead the empty string.
def both_ends(s):
+++your code here+++
return

C. fiz_start

Given a string s, return a string

where all occurences of its first char have
been changed to ’*’, except do not change
the first char itself.

e.g. ’babble’ yields ’bax*le’

Assume that the string is length 1 or more.

RO W R R KRR

s
where all instances of stra have been replaced by strb.
def fix_start(s):

+++your code here+++

return

D. MizUp

Given strings a and b, return a single string with a ...

...and b separated

by a space ’<a> ’, except swap the first 2 chars of ...

...each string.
#e.g.
’miz’, pod’ -> ’pox mid’
’dog’, ’dimmer’ -> ’dig donner’
Assume a and b are length 2 or more.
def mix_up(a, b):
+++your code here+++
return

E. wverbing
Given a string, if tts length ¢s at least 3,
add ’ing’ to its end.

Unless it already ends in ’ing’, in which case
add ’ly’ instead.

If the string length ts less than 3,

R R W W W

Return the resulting string.
def verbing(s):
+++your code here+++

elements have been reduced to a single ...

returns [1, 2, 3]. You may create a new...

Hint: s.replace(stra, strb) returns a version of string...

leave it unchanged. ..

10

return

F. not_bad

Given a string, find the first appearance of the
substring ’not’ and ’bad’. If the ’bad’ follows
the ’not’, replace the whole ’not’...’bad’ substring
with ’good’.

Return the resulting string.

So ’This dinner is not that bad!’ yields:

This dinner is good!

def not_bad(s):

+++your code here+++

return

O OR W R R W W

*

G. front_back

Consider dividing a string into two halwves.

If the length is even, the front and back halves are ...

...the same length.

If the length is odd, we’ll say that the extra char ...
...goes wn the front half.

e.g. ’abcde’, the front half is ’abc’,
...de’.

Given 2 strings, a and b, return a string of the form

a-front + b-front + a-back + b-back

def front_back(a, b):

+++your code here+++

return

H W

the back half ’...

