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Diffusion

x

1 Lets consider a movement of the particle in gas. Kinetic
energy of a particle (in a given moment):

Ek =
mv2

2

2 Colisions change the kinetic energy. How often the molecules
colide (e.g. what is the avg. number of colisions of a single
H2O particle during 1s)?
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Diffusion

x

1 avg. number of colisions of a single H2O particle during 1s
= 60 ∗ 1012

2 This is the reason to introduce a “mean kinetic energy”.
Termodynamics helps in this idea, the absolute temperature of
a molecule, T is defined:

T ≡ mv2

3k

,where k is a Boltzmann constant (1.38 ∗ 10−23 J
K ).

3 thermal kinetic energy = mv2x
2 = 3kT

2
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Diffusion

x

We will try to use this relation to describe the diffusion process. To
simplyfy the process lets consider the movement of a molecule
along only one axis (e.g. x). Then:

avg. kin. energy along x-axis = mv2x
2 = 1

3
3kT
2

Since the mass does not change: m v2x
2 = kT

2 ⇒ v2
x = kT

m

vx ,rms =

√
v2
x =

√
kT
m

Example: movement of the sucrose..
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Diffusion

Movement of the sucrose

msuc = 342u

⇒ mp = 0.342kg/6.02 ∗ 10−23mol−1 = 5.7 ∗ 10−25kg

1J = N ∗m = (
kg ∗m

s2 ) ∗m =
kg ∗m2

s2

vx ,rms =

√
kT
mp

=

√(
1.38 ∗ 10−23 J

K

)
∗ 273K/ (5.7 ∗ 10−25kg)

=
√
0.66 ∗ 104m2s−2 = 81m/s
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Diffusion

Random walk

1 We start at t = 0 with x = 0.
2 The particle moves a fixed distance at every τ seconds.
3 The particle moves with the velocity ±ux . Effective step

length is then δ = ±τux .
4 The probability of choosing the ± direction is 1/2.
5 The ± direction of each step is independent from previous

steps.
6 If we place N molecules in the same time, they are not

interfering each other.

Szymon Stoma Statistical physics



Diffusion

Random walk

1 We start at t = 0 with x = 0.
2 The particle moves a fixed distance at every τ seconds.
3 The particle moves with the velocity ±ux . Effective step

length is then δ = ±τux .
4 The probability of choosing the ± direction is 1/2.
5 The ± direction of each step is independent from previous

steps.
6 If we place N molecules in the same time, they are not

interfering each other.

Szymon Stoma Statistical physics



Diffusion

Random walk

1 We start at t = 0 with x = 0.
2 The particle moves a fixed distance at every τ seconds.
3 The particle moves with the velocity ±ux . Effective step

length is then δ = ±τux .
4 The probability of choosing the ± direction is 1/2.
5 The ± direction of each step is independent from previous

steps.
6 If we place N molecules in the same time, they are not

interfering each other.

Szymon Stoma Statistical physics



Diffusion

Random walk

1 We start at t = 0 with x = 0.
2 The particle moves a fixed distance at every τ seconds.
3 The particle moves with the velocity ±ux . Effective step

length is then δ = ±τux .
4 The probability of choosing the ± direction is 1/2.
5 The ± direction of each step is independent from previous

steps.
6 If we place N molecules in the same time, they are not

interfering each other.

Szymon Stoma Statistical physics



Diffusion

Random walk

1 We start at t = 0 with x = 0.
2 The particle moves a fixed distance at every τ seconds.
3 The particle moves with the velocity ±ux . Effective step

length is then δ = ±τux .
4 The probability of choosing the ± direction is 1/2.
5 The ± direction of each step is independent from previous

steps.
6 If we place N molecules in the same time, they are not

interfering each other.

Szymon Stoma Statistical physics



Diffusion

Random walk

1 We start at t = 0 with x = 0.
2 The particle moves a fixed distance at every τ seconds.
3 The particle moves with the velocity ±ux . Effective step

length is then δ = ±τux .
4 The probability of choosing the ± direction is 1/2.
5 The ± direction of each step is independent from previous

steps.
6 If we place N molecules in the same time, they are not

interfering each other.

Szymon Stoma Statistical physics



Diffusion

Random walk

According to these rules, we know that the position of ith particle
after n steps differs from its position after n − 1 steps is δ:

xi (n) = xi (n − 1) + δ

For N particles, the average displacement after n steps:

X (n) =
1
N

∑
xi (n) ,

=
1
N

∑
xi (n − 1) +

1
N

∑
δ
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Diffusion

Random walk - expectation

Now the last term can be viewed as an expectation of Bernoulli
process. E (step dist) = pδ + q(−δ) = 0
Then:

X (n) =
1
N

∑
xi (n − 1) +

1
N

∑
δ =

1
N

∑
xi (n − 1)

Since xi (0) = 0 then X (n) = 0
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Diffusion

Random walk - variance
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Diffusion

Random walk - variance

Where exactly are we going to find a given particle after a number
of steps? The diference of the particle position from the
expectation is given by variance. Since the mean was 0, the
difference of the ith particle after nth step from the expected
position is: x2

i (n) = [xi (n − 1) + δ]2

σ2
X (n) = X 2 (n) =

1
N

∑
[xi (n − 1) + δ]2

=
1
N

∑[
x2
i (n − 1) + 2xi (n − 1) δ + δ2

]

=
1
N

∑
x2
i (n − 1) +

1
N

∑
δ2
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Diffusion

Random walk - variance

=
1
N

∑
x2
i (n − 1) +

1
N

∑
δ2

= X 2(n − 1) + δ2

Since X 2(0) = 0:

σ2
X (n) = X 2(n) = nδ2

σX (n) =

√
X 2(n) = Xrms (n) =

√
nδ
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Diffusion

Random walk - variance

Lets consider the spread of the particles after time t. We know that
n = t/τ . Then Xrms (n) =

√
nδ =

√
t
τ δ. Now if we would like to

calculate the average velocity of walking particle:

v = x/t ⇒ vrms =
√

1
tτ δ. This means that the “average velocity of

diffusion decreases” with time.
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Diffusion

Diffusion coefficient

Diffusion coef. is equal to half of the rate at which the variance of
particle location changes through time i.e.

D ≡ 1
2

dσ
dt

For the one dimensional case X (n) = t
τ δ

2 so D = δ2

2τ . Now we can

rewrite: Xrms (n) =
√

t
τ δ =

√
2t δ22τ =

√
2tD
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Diffusion

Sucrose

The diffusion coefficiant of sucrose in water is: 10−9m2/s . So how
far a particle of sucrose can move at average during a one second?

Xrms(1s) =
√
2 ∗ 10−9 ∗ 1m/s < 10−4m/s � 81m/s
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Diffusion

Link with Binomial distribution

Lets see the random walk as an istance of Binomial distribution.
Then the probability of finding particle at the starting point is:

P(x = 0) =

(
n

n/2

)
pn/2qn/2 =

(
n

n/2

)
(1/2)n

This is coherent with our previous reasoning about the variance.For
large n the Binomial distribution can be approximated by the
Normal distribution. We have calculated that µ = 0, σ2 =

√
2tD.

From this we can write a PDF:

g(x) = fX (x) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

=
1√
4πDt

e−
x2
4Dt

Now, to compute the probability that for a given time t, the particle
is between a < x < b we only need to compute the integral of g(x).
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