Statistical physics lecture 9

Szymon Stoma

14-12-2009

Lets consider a movement of the particle in gas. Kinetic energy of a particle (in a given moment):

$$E_k = \frac{mv^2}{2}$$

Colisions change the kinetic energy. How often the molecules colide (e.g. what is the avg. number of colisions of a single H₂O particle during 1s)?

Lets consider a movement of the particle in gas. Kinetic energy of a particle (in a given moment):

$$E_k = \frac{mv^2}{2}$$

Colisions change the kinetic energy. How often the molecules colide (e.g. what is the avg. number of colisions of a single H₂O particle during 1s)?

• avg. number of colisions of a single H_2O particle during 1s = $60 * 10^{12}$

On This is the reason to introduce a "mean kinetic energy". Termodynamics helps in this idea, the absolute temperature of a molecule, T is defined:

$$T \equiv \frac{\overline{mv^2}}{3k}$$

,where k is a Boltzmann constant $(1.38 * 10^{-23} \frac{J}{K})$.

3 thermal kinetic energy $=\frac{\overline{mv_x^2}}{2}=\frac{3kT}{2}$

- avg. number of colisions of a single H_2O particle during 1s = $60 * 10^{12}$
- This is the reason to introduce a "mean kinetic energy". Termodynamics helps in this idea, the absolute temperature of a molecule, T is defined:

$$T \equiv \frac{\overline{mv^2}}{3k}$$

,where k is a Boltzmann constant $(1.38 * 10^{-23} \frac{J}{K})$.

3 thermal kinetic energy $=\frac{\overline{mv_x^2}}{2}=\frac{3kT}{2}$

- avg. number of colisions of a single H_2O particle during 1s = $60 * 10^{12}$
- This is the reason to introduce a "mean kinetic energy". Termodynamics helps in this idea, the absolute temperature of a molecule, T is defined:

$$T \equiv \frac{\overline{mv^2}}{3k}$$

,where k is a Boltzmann constant $(1.38 * 10^{-23} \frac{J}{K})$.

• thermal kinetic energy = $\frac{\overline{mv_x^2}}{2} = \frac{3kT}{2}$

We will try to use this relation to describe the diffusion process. To simplyfy the process lets consider the movement of a molecule along only one axis (e.g. x). Then:

avg. kin. energy along x-axis $=\frac{mv_x^2}{2} = \frac{1}{3}\frac{3kT}{2}$ Since the mass does not change: $m\frac{\overline{v_x^2}}{2} = \frac{kT}{2} \Rightarrow \overline{v_x^2} = \frac{kT}{m}$

$$v_{x,rms} = \sqrt{v_x^2} = \sqrt{\frac{kT}{m}}$$

Example: movement of the sucrose ..

We will try to use this relation to describe the diffusion process. To simplyfy the process lets consider the movement of a molecule along only one axis (e.g. x). Then: avg. kin. energy along x-axis $=\frac{\overline{mv_x^2}}{2} = \frac{1}{3}\frac{3kT}{2}$ Since the mass does not change: $m\frac{\overline{v_x^2}}{2} = \frac{kT}{2} \Rightarrow \overline{v_x^2} = \frac{kT}{m}$ $v_{x,rms} = \sqrt{v_x^2} = \sqrt{\frac{kT}{m}}$

Example: movement of the sucrose ..

We will try to use this relation to describe the diffusion process. To simplyfy the process lets consider the movement of a molecule along only one axis (e.g. x). Then: avg. kin. energy along x-axis = $\frac{\overline{mv_x^2}}{2} = \frac{1}{3}\frac{3kT}{2}$ Since the mass does not change: $m\frac{\overline{v_x^2}}{2} = \frac{kT}{2} \Rightarrow \overline{v_x^2} = \frac{kT}{m}$

$$v_{x,rms} = \sqrt{\overline{v_x^2}} = \sqrt{\frac{kT}{m}}$$

Example: movement of the sucrose..

We will try to use this relation to describe the diffusion process. To simplyfy the process lets consider the movement of a molecule along only one axis (e.g. x). Then: avg. kin. energy along x-axis = $\frac{\overline{mv_x^2}}{2} = \frac{1}{3}\frac{3kT}{2}$ Since the mass does not change: $m\frac{\overline{v_x^2}}{2} = \frac{kT}{2} \Rightarrow \overline{v_x^2} = \frac{kT}{m}$

$$v_{x,rms} = \sqrt{\overline{v_x^2}} = \sqrt{\frac{kT}{m}}$$

Example: movement of the sucrose..

Movement of the sucrose

 $m_{suc} = 342u$

 $\Rightarrow m_p = 0.342 kg/6.02 * 10^{-23} mol^{-1} = 5.7 * 10^{-25} kg$

$$1J = N * m = (\frac{kg * m}{s^2}) * m = \frac{kg * m^2}{s^2}$$

$$v_{x,rms} = \sqrt{\frac{kT}{m_p}} = \sqrt{\left(1.38 * 10^{-23} \frac{J}{K}\right) * 273K/(5.7 * 10^{-25}kg)}$$

$$=\sqrt{0.66*10^4m^2s^{-2}}=81m/s$$

・ 同 ト ・ 三 ト ・

э

Movement of the sucrose

$$m_{suc} = 342u$$

$$\Rightarrow m_p = 0.342 kg/6.02 * 10^{-23} mol^{-1} = 5.7 * 10^{-25} kg$$

$$1J = N * m = (\frac{kg * m}{s^2}) * m = \frac{kg * m^2}{s^2}$$

$$v_{x,rms} = \sqrt{\frac{kT}{m_p}} = \sqrt{\left(1.38 * 10^{-23} \frac{J}{K}\right) * 273K / (5.7 * 10^{-25} kg)}$$

$$=\sqrt{0.66*10^4m^2s^{-2}}=81m/s$$

æ

< 17 ▶ <

Movement of the sucrose

$$m_{suc} = 342u$$

$$\Rightarrow m_{p} = 0.342 kg/6.02 * 10^{-23} mol^{-1} = 5.7 * 10^{-25} kg$$

$$1J = N * m = (\frac{kg * m}{s^2}) * m = \frac{kg * m^2}{s^2}$$

$$v_{x,rms} = \sqrt{\frac{kT}{m_p}} = \sqrt{\left(1.38 * 10^{-23} \frac{J}{K}\right) * 273K/(5.7 * 10^{-25} kg)}$$

$$=\sqrt{0.66*10^4m^2s^{-2}}=81m/s$$

æ

Movement of the sucrose

$$m_{suc} = 342u$$

$$\Rightarrow m_p = 0.342 kg/6.02 * 10^{-23} mol^{-1} = 5.7 * 10^{-25} kg$$

$$1J = N * m = (\frac{kg * m}{s^2}) * m = \frac{kg * m^2}{s^2}$$

$$v_{x,rms} = \sqrt{\frac{kT}{m_p}} = \sqrt{\left(1.38 * 10^{-23} \frac{J}{K}\right) * 273K/(5.7 * 10^{-25}kg)}$$
$$= \sqrt{0.66 * 10^4 m^2 s^{-2}} = 81m/s$$

Movement of the sucrose

$$m_{suc} = 342u$$

$$\Rightarrow m_p = 0.342 kg/6.02 * 10^{-23} mol^{-1} = 5.7 * 10^{-25} kg$$

$$1J = N * m = (\frac{kg * m}{s^2}) * m = \frac{kg * m^2}{s^2}$$

$$v_{x,rms} = \sqrt{\frac{kT}{m_p}} = \sqrt{\left(1.38 * 10^{-23} \frac{J}{K}\right) * 273K/(5.7 * 10^{-25}kg)}$$
$$= \sqrt{0.66 * 10^4 m^2 s^{-2}} = 81m/s$$

• We start at t = 0 with x = 0.

- ② The particle moves a fixed distance at every au seconds.
- The particle moves with the velocity ±u_x. Effective step length is then δ = ±τu_x.
- The probability of choosing the \pm direction is 1/2.
- The \pm direction of each step is independent from previous steps.
- If we place N molecules in the same time, they are not interfering each other.

- We start at t = 0 with x = 0.
- 2 The particle moves a fixed distance at every τ seconds.
- The particle moves with the velocity ±u_x. Effective step length is then δ = ±τu_x.
- The probability of choosing the \pm direction is 1/2.
- The \pm direction of each step is independent from previous steps.
- If we place N molecules in the same time, they are not interfering each other.

- We start at t = 0 with x = 0.
- 2 The particle moves a fixed distance at every τ seconds.
- **③** The particle moves with the velocity $\pm u_x$. Effective step length is then $\delta = \pm \tau u_x$.
- The probability of choosing the \pm direction is 1/2.
- The \pm direction of each step is independent from previous steps.
- If we place N molecules in the same time, they are not interfering each other.

- We start at t = 0 with x = 0.
- **2** The particle moves a fixed distance at every τ seconds.
- Solution The particle moves with the velocity ±u_x. Effective step length is then δ = ±τu_x.
- **④** The probability of choosing the \pm direction is 1/2.
- (a) The \pm direction of each step is independent from previous steps.
- If we place N molecules in the same time, they are not interfering each other.

- We start at t = 0 with x = 0.
- **2** The particle moves a fixed distance at every τ seconds.
- Solution The particle moves with the velocity ±u_x. Effective step length is then δ = ±τu_x.
- **④** The probability of choosing the \pm direction is 1/2.
- $\textcircled{\sc opt}$ The \pm direction of each step is independent from previous steps.
- If we place N molecules in the same time, they are not interfering each other.

- We start at t = 0 with x = 0.
- **2** The particle moves a fixed distance at every τ seconds.
- Solution The particle moves with the velocity ±u_x. Effective step length is then δ = ±τu_x.
- **④** The probability of choosing the \pm direction is 1/2.
- If we place *N* molecules in the same time, they are not interfering each other.

According to these rules, we know that the position of *i*th particle after *n* steps differs from its position after n - 1 steps is δ :

$$x_i(n) = x_i(n-1) + \delta$$

For *N* particles, the average displacement after *n* steps:

$$\overline{X}\left(n\right)=\frac{1}{N}\sum x_{i}\left(n\right),$$

$$=\frac{1}{N}\sum x_{i}\left(n-1\right)+\frac{1}{N}\sum\delta$$

According to these rules, we know that the position of *i*th particle after *n* steps differs from its position after n - 1 steps is δ :

$$x_{i}\left(n\right)=x_{i}\left(n-1\right)+\delta$$

For N particles, the average displacement after n steps:

$$\overline{X}(n)=rac{1}{N}\sum x_{i}(n),$$

$$=\frac{1}{N}\sum x_{i}\left(n-1\right)+\frac{1}{N}\sum\delta$$

According to these rules, we know that the position of *i*th particle after *n* steps differs from its position after n - 1 steps is δ :

$$x_{i}\left(n\right)=x_{i}\left(n-1\right)+\delta$$

For N particles, the average displacement after n steps:

$$\overline{X}(n)=rac{1}{N}\sum x_{i}(n),$$

$$=\frac{1}{N}\sum x_{i}\left(n-1\right)+\frac{1}{N}\sum\delta$$

Random walk - expectation

Now the last term can be viewed as an expectation of Bernoulli process. $E(step \, dist) = p\delta + q(-\delta) = 0$ Then:

$$\overline{X}(n) = \frac{1}{N} \sum_{i} x_i (n-1) + \frac{1}{N} \sum_{i} \delta = \frac{1}{N} \sum_{i} x_i (n-1)$$

nce $x_i (0) = 0$ then $\overline{X}(n) = 0$

< ∃ >

Random walk - expectation

Now the last term can be viewed as an expectation of Bernoulli process. $E(step \, dist) = p\delta + q(-\delta) = 0$ Then:

$$\overline{X}(n) = \frac{1}{N} \sum_{i} x_i (n-1) + \frac{1}{N} \sum_{i} \delta = \frac{1}{N} \sum_{i} x_i (n-1)$$

$$e_{X_i}(0) = 0 \text{ then } \overline{X}(n) = 0$$

Random walk - expectation

Now the last term can be viewed as an expectation of Bernoulli process. $E(step \, dist) = p\delta + q(-\delta) = 0$ Then:

$$\overline{X}(n) = \frac{1}{N} \sum x_i (n-1) + \frac{1}{N} \sum \delta = \frac{1}{N} \sum x_i (n-1)$$

Since $x_i(0) = 0$ then $\overline{X}(n) = 0$

Random walk - variance

Szymon Stoma Statistical physics

Random walk - variance

$$\sigma_X^2(n) = \overline{X^2}(n) = \frac{1}{N} \sum \left[x_i(n-1) + \delta \right]^2$$

$$= \frac{1}{N} \sum \left[x_{i}^{2} (n-1) + 2x_{i} (n-1) \delta + \delta^{2} \right]$$

$$=\frac{1}{N}\sum x_i^2\left(n-1\right)+\frac{1}{N}\sum \delta^2$$

Random walk - variance

$$\sigma_X^2(n) = \overline{X^2}(n) = \frac{1}{N} \sum \left[x_i(n-1) + \delta \right]^2$$

$$=\frac{1}{N}\sum \left[x_{i}^{2}\left(n-1\right)+2x_{i}\left(n-1\right)\delta+\delta^{2}\right]$$

$$=\frac{1}{N}\sum x_i^2\left(n-1\right)+\frac{1}{N}\sum \delta^2$$

Random walk - variance

$$\sigma_X^2(n) = \overline{X^2}(n) = \frac{1}{N} \sum \left[x_i(n-1) + \delta \right]^2$$

$$=\frac{1}{N}\sum \left[x_{i}^{2}\left(n-1\right)+2x_{i}\left(n-1\right)\delta+\delta^{2}\right]$$

$$=\frac{1}{N}\sum x_i^2\left(n-1\right)+\frac{1}{N}\sum \delta^2$$

Random walk - variance

$$\sigma_X^2(n) = \overline{X^2}(n) = \frac{1}{N} \sum \left[x_i(n-1) + \delta \right]^2$$

$$=\frac{1}{N}\sum\left[x_{i}^{2}\left(n-1\right)+2x_{i}\left(n-1\right)\delta+\delta^{2}\right]$$

$$=\frac{1}{N}\sum x_{i}^{2}\left(n-1\right)+\frac{1}{N}\sum\delta^{2}$$

Random walk - variance

$$= \frac{1}{N} \sum_{i} x_i^2 (n-1) + \frac{1}{N} \sum_{i} \delta^2$$
$$= \overline{X^2} (n-1) + \delta^2$$

Since $\overline{X^2}(0) = 0$:

$$\sigma_X^2(n) = \overline{X^2}(n) = n\delta^2$$

$$\sigma_X(n) = \sqrt{X^2(n)} = X_{rms}(n) = \sqrt{n\delta}$$

æ

▶ ▲□ ▶ ▲ □ ▶

Random walk - variance

$$= \frac{1}{N} \sum_{i=1}^{N} x_i^2 (n-1) + \frac{1}{N} \sum_{i=1}^{N} \delta^2$$
$$= \overline{X^2} (n-1) + \delta^2$$

Since $\overline{X^2}(0) = 0$:

$$\sigma_X^2(n) = \overline{X^2}(n) = n\delta^2$$

$$\sigma_X(n) = \sqrt{X^2}(n) = X_{rms}(n) = \sqrt{n\delta}$$

æ

▲□ ▶ ▲ 目

Random walk - variance

$$= \frac{1}{N} \sum_{i=1}^{N} x_i^2 (n-1) + \frac{1}{N} \sum_{i=1}^{N} \delta^2$$
$$= \overline{X^2} (n-1) + \delta^2$$

Since $\overline{X^2}(0) = 0$:

$$\sigma_X^2(n) = \overline{X^2}(n) = n\delta^2$$

$$\sigma_X(n) = \sqrt{\overline{X^2}(n)} = X_{rms}(n) = \sqrt{n\delta}$$

æ

▲□ ▶ ▲ 目

Random walk - variance

Lets consider the spread of the particles after time *t*. We know that $n = t/\tau$. Then $X_{rms}(n) = \sqrt{n\delta} = \sqrt{\frac{t}{\tau}}\delta$. Now if we would like to calculate the average velocity of walking particle: $v = x/t \Rightarrow v_{rms} = \sqrt{\frac{1}{t\tau}}\delta$. This means that the "average velocity of diffusion decreases" with time.

Random walk - variance

Lets consider the spread of the particles after time *t*. We know that $n = t/\tau$. Then $X_{rms}(n) = \sqrt{n\delta} = \sqrt{\frac{t}{\tau}}\delta$. Now if we would like to calculate the average velocity of walking particle: $v = x/t \Rightarrow v_{rms} = \sqrt{\frac{1}{t\tau}}\delta$. This means that the "average velocity of diffusion decreases" with time. Lets consider the spread of the particles after time *t*. We know that $n = t/\tau$. Then $X_{rms}(n) = \sqrt{n\delta} = \sqrt{\frac{t}{\tau}}\delta$. Now if we would like to calculate the average velocity of walking particle: $v = x/t \Rightarrow v_{rms} = \sqrt{\frac{1}{t\tau}}\delta$. This means that the "average velocity of diffusion decreases" with time.

$$D \equiv \frac{1}{2} \frac{d\sigma}{dt}$$

$$D \equiv \frac{1}{2} \frac{d\sigma}{dt}$$

$$D \equiv \frac{1}{2} \frac{d\sigma}{dt}$$

$$D \equiv \frac{1}{2} \frac{d\sigma}{dt}$$

The diffusion coefficiant of sucrose in water is: $10^{-9}m^2/s$. So how far a particle of sucrose can move at average during a one second?

 $X_{rms}(1s) = \sqrt{2*10^{-9}*1}m/s < 10^{-4}m/s \ll 81m/s$

The diffusion coefficiant of sucrose in water is: $10^{-9}m^2/s$. So how far a particle of sucrose can move at average during a one second?

$$X_{rms}(1s) = \sqrt{2*10^{-9}*1}m/s < 10^{-4}m/s \ll 81m/s$$

Link with Binomial distribution

Lets see the random walk as an istance of Binomial distribution. Then the probability of finding particle at the starting point is:

$$P(x=0) = \binom{n}{n/2} p^{n/2} q^{n/2} = \binom{n}{n/2} (1/2)^{n/2} q^{n/2} = \binom{n}{n/2} (1/2)^{n/2} q^{n/2} q$$

This is coherent with our previous reasoning about the variance.For large *n* the Binomial distribution can be approximated by the Normal distribution. We have calculated that $\mu = 0, \sigma^2 = \sqrt{2tD}$. From this we can write a PDF:

$$g(x) = f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$=\frac{1}{\sqrt{4\pi Dt}}e^{-\frac{x^2}{4Dt}}$$

Now, to compute the probability that for a given time t, the particle is between $a \le x \le b$ we only need to compute the drite and $b \notin b(xd, 200)$ Szymon Stoma Statistical physics

Link with Binomial distribution

Lets see the random walk as an istance of Binomial distribution. Then the probability of finding particle at the starting point is:

$$P(x=0) = \binom{n}{n/2} p^{n/2} q^{n/2} = \binom{n}{n/2} (1/2)^n$$

This is coherent with our previous reasoning about the variance. For large *n* the Binomial distribution can be approximated by the Normal distribution. We have calculated that $\mu = 0, \sigma^2 = \sqrt{2tD}$. From this we can write a PDF:

$$g(x) = f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$=\frac{1}{\sqrt{4\pi Dt}}e^{-\frac{x^2}{4Dt}}$$

Now, to compute the probability that for a given time t, the particle is between a < x < b we only need to compute the fitter all of b(x, b, x).

Link with Binomial distribution

Lets see the random walk as an istance of Binomial distribution. Then the probability of finding particle at the starting point is:

$$P(x=0) = \binom{n}{n/2} p^{n/2} q^{n/2} = \binom{n}{n/2} (1/2)^n$$

This is coherent with our previous reasoning about the variance.For large *n* the Binomial distribution can be approximated by the Normal distribution. We have calculated that $\mu = 0, \sigma^2 = \sqrt{2tD}$. From this we can write a PDF:

$$g(x) = f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$=\frac{1}{\sqrt{4\pi Dt}}e^{-\frac{x^2}{4Dt}}$$

Now, to compute the probability that for a given time t, the particle is between a < x < b we only need to compute the fitter all of b(x, b, x).

Link with Binomial distribution

Lets see the random walk as an istance of Binomial distribution. Then the probability of finding particle at the starting point is:

$$P(x = 0) = \binom{n}{n/2} p^{n/2} q^{n/2} = \binom{n}{n/2} (1/2)^n$$

This is coherent with our previous reasoning about the variance.For large *n* the Binomial distribution can be approximated by the Normal distribution. We have calculated that $\mu = 0, \sigma^2 = \sqrt{2tD}$. From this we can write a PDF:

$$g(x) = f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$=rac{1}{\sqrt{4\pi Dt}}e^{-rac{x^2}{4Dt}}$$

Now, to compute the probability that for a given time t, the particle is between a < x < b we only need to compute the fitter all of b(x, b, x).

Link with Binomial distribution

Lets see the random walk as an istance of Binomial distribution. Then the probability of finding particle at the starting point is:

$$P(x = 0) = \binom{n}{n/2} p^{n/2} q^{n/2} = \binom{n}{n/2} (1/2)^n$$

This is coherent with our previous reasoning about the variance.For large *n* the Binomial distribution can be approximated by the Normal distribution. We have calculated that $\mu = 0, \sigma^2 = \sqrt{2tD}$. From this we can write a PDF:

$$g(x) = f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$=\frac{1}{\sqrt{4\pi Dt}}e^{-\frac{x^2}{4Dt}}$$

Now, to compute the probability that for a given time t, the particle is between a < x < b we only need to compute the integral of g(x).