
Supplementary material

In the following, we give an introduction to STSE operation and to
demonstrate how to use STSE most efficiently to analyze and simulate
biological systems.

In Part I, a typical STSE workflow including the modules for digitization,
representation, analysis and modeling is presented in detail using the running
example of an intercellular, mitogen-activated protein kinase gradient formation
in mating yeast [9].

In Part II, we compare STSE modules with a selection of other available
software tools which allow to perform each of the workflow substeps separately
(i.e. digitization, representation, analysis or modeling).

Part III gives helpful information on STSE testing and installation proce-
dures as well as the specification of how to reproduce the here presented analysis
(i.e. how to run STSE, where to find example source codes and test data sets
used in this text).

Part IV contains the STSE GUI application screenshots.

We would like to stress that we focus more on the software capabilities and its
usage scenario than on the biological results. To simplify the analysis and to
facilitate the usage of examples in a confirmatory way, we work on test data,
inspired by the experiments and explanations presented by Maeder et al. in
[9]. This is only an introductory exsample of how to make use of STSE,
exemplified by one application area. For further examples as well as video
tutorials please visit the website of STSE: http://www.stse-software.org/

Part I. Example case: diffusion in

budding yeast

1 Biological background

Throughout this tutorial we will use the example of the intensively studied yeast
pheromone MAP kinase cascade and we focus in particular on the distribution
of the double-phosphorylated Fus3 (Fus3PP) in a shmooing yeast cell [9]. Fus3
is part of the yeast mating pheromone signaling: upon stimulation with the
pheromone α-factor, a G-protein coupled receptor is activated which leads via
some intermediate steps to the recruitment of Fus3 to the forming shmoo tip.

1

1 Biological background 2

Fus3 gets double-phosphorylated via the MAP kinase Ste7. The Fus3PP gets
released at the shmoo tip and can diffuse throughout the cell, which results in
an observable Fus3PP gradient. When reaching the nucleus Fus3PP, is actively
transported across the nuclear membrane and regulates transcription factors
that modulate mating-specific gene expression.

To present how STSE can be used effectively we demonstrate its usage by
means of analyzing and characterizing selected aspects of the Fus3PP gradient
in a shmooing yeast cell. For this purpose we demonstrate how to:

• Quantify the ratio of the average cytoplasm/nucleus expression of Fus3PP

based on fluorescence signal intensity acquired from microscopy images,

• Show gradient curves for Fus3PP i) along the x-axis of the cell data image
ii) around the nucleus,

• Simulate the process of the Fus3PP diffusion in the cytoplasm to determine
the underlying conditions that lead to the qualitative values captured in
the image.

We evaluate the results of the simulations and discuss i) whether the appearance
of a Fus3PP gradient throughout the cell can be explained by simple diffusion and
ii) how to define which conditions and model parameters are the most plausible
and allow to reproduce the experimental observations with the smallest error.

1.1 Digitization

By the process of digitization we mean the generation of a digital data struc-
ture, allowing for efficient analysis, representation and modeling. The classical
approach is to decompose the microscopy image into physiologically distinguish-
able compartments (e.g. nucleus, cytoplasm, etc.), which is called image segmen-
tation [14, 3]. Usually image segmentation results in a data structure linking
the compartments with pixels. STSE differs from this approach by introduc-
ing an abstract, intermediate layer composed of so-called subcompartments. To
generate this layer each compartment is divided into subcompartments which
have the geometry of polygons and are organized in such a way that they fill the
entire compartment and do not overlap with each other. The default geometry
is automatically composed of equilateral hexagons. The purpose of introducing
this abstract layer is to allow for adjusting the digitization precision separately
for different compartments, which is useful when it comes to analysis and mod-
eling.

In the running example we focus on the Fus3PP gradient in the cytoplasm.
In this case it is useful to keep high precision in the cytoplasm compartment
in order to capture the gradient. Since our analysis includes hypothesis about
Fus3PP distribution neither outside the cell nor in the nucleus (motivation for
this is presented in 1.3), we may use varying “subcompartment densities” in
these compartments as presented in Figure 1. The user is able to fine-tune the
geometry of subcompartments using the GUI editor to match different analysis

1 Biological background 3

(a) (b) (c)

Fig. 1: Different “subcompartment density” variants: (a) rough regular digiti-
zation (b) more refined, regular digitization (c) refined, irregular representation
edited with the STSE GUI.

and modeling requirements (Figure 1c). Without using the abstract subcom-
partment layer, the “subcompartment density” would have to remain constant
and would be defined by pixels.

Another task related to the digitization of image data is the acquisition of
subcompartment types (i.e. determining for each abstract subcompartment its
affiliation to a cellular compartment). This task can be performed via the GUI
or a Python script. Although a subcompartment type can be set manually,
in both cases the recommended way is to use an automatic protocol based on
binary masks. These binary masks are based on original microscopy images
and can be prepared with 3rd party segmentation algorithms (e.g. implemented
in ImageJ). The choice of the segmentation algorithm depends highly on the
particular problem and there already exist a multitude of advanced software
packages dedicated to this task. Therefore in the current version of the STSE
we decided to use already segmented images as the starting point of the proposed
workflow and leave the choice of the optimal segmentation method to the user.
Each subcompartment is associated with only one compartment type. When
a conflict occures (e.g. in the case of overlapping binary masks) the user can
influence subcompartment types by changing the order of application of the
binary masks or by defining subcompartment types manually.

In the Fus3 example we use binary masks for localization of the following cell
types (Figure 2): the cytoplasm (schmoo_00.png), the nucleus (schmoo_01.png),
the cell membrane (schmoo_02.png), the nuclear membrane (schmoo_03.png),
the schmoo tip (schmoo_04.png).

In the running Fus3 example these mask files are used to acquire the sub-
compartment types by either GUI or a Python script. Both methods are covered
in subsections 1.1.1 and 1.1.2, respectively. The results of such an operation are
presented in Figure 3.

1 Biological background 4

(a) schmoo_00.png (b) schmoo_01.png (c) schmoo_02.png

(d) schmoo_03.png (e) schmoo_04.png

Fig. 2: Binary masks created from raw data images. The images present the
binary masks for (a) the cytoplasm, (b) the nucleus, (c) the cell membrane, (d)
the nuclear membrane and (e) the shmoo tip (a single pixel is sufficient to mark
the shmoo tip).

(a) (b)

Fig. 3: Subcompartment types assignment: (a) mesh showing the geometry
of subcompartments (b) types of subcompartments acquired from the binary
masks. Different sphere colors depict different compartment identities: white -
outside, black - the cell membrane, blue - the nucleus, red - the cytoplasm, pink
- the nuclear membrane, yellow - the shmoo tip.

1 Biological background 5

(a) (b)

Fig. 4: Signal quantification (a) indexed color image of Fus3PP localization
(schmoo_05.png) (b) result of Fus3PP signal quantification based on the indexed
color image. Small spheres depict the compartment types (as in the Figure 3).

The automatic acquisition of the signal from the microscopy image is an-
other demanding task and provides the basis for the subsequent analysis and
modeling steps. For this purpose we use indexed color images (e.g. standard
light/confocal microscopy images) corresponding to molecular concentrations of
molecules of interest. In the running Fus3 example this image resulted from
fluorescence lifetime imaging microscopy (FLIM) experiment which determines
the intracellular localization of Fus3PP (schmoo_05.png). For the sake of sim-
plicity we use a test data image inspired by the experiments described in [9], in
which the activated form of Fus3 has been directly detected. Again, this task
can be performed either via the GUI or with a Python script. Both methods
are covered in subsection 1.1.1 and 1.1.2, respectively. The result is presented
in Figure 4.

To summarize, the inputs for the digitization procedure are i) binary masks
ii) indexed color images. The outcome of the digitization step is a manageable
amount of subcompartments covering the microscopic image. Each subcompart-
ment is allocated with a specific compartment type and the average intensity of
protein(s) of interest acquired from input data.

1.1.1 GUI

The complete procedure for performing the steps presented in Section 1.1 with
the GUI application STSE Compartment Editor is presented in Algorithm 1
(images presenting these actions are shown in the Part IV of this document;
additionally, video tutorials covering this subject are provided on the webpage
of the STSE project).

1 Biological background 6

Algorithm 1 Digitization procedure in STSE.

1. Load indexed color image with fluorescent protein of interest by using the button “Load

background” (Figure 11),

2. Add Voronoi centers by choosing Actions -> Add Voronoi centers in the menu bar. Then

define in the Actions menu the properties of the Voronoi centers and execute the task (Figure

12). Now, if it is desired, it is possible to edit the mesh by dragging the Voronoi centers

(check help tab in the GUI application for editing related keystrokes and mouse actions),

3. Calculate expression by choosing Actions -> Calculate expression in the menu bar. Then

define your cell property name and execute the task (Figure 13); the chosen property name

must be one of the properties visible in the Selected center tab,

4. Go to the Visualization menu and click “Display cell property” and choose the cell property to

be displayed. The averaged pixel intensity in each polygon is represented by a color scheme.

5. To acquire the subcompartment types:

(a) Hide the surface of the mesh, to see the binary masks loaded in the next step. This

is done via the button “View the Mayavi pipeline” on the left. Go to Mayavi Scene

1 -> VTK Data -> Colors and legends -> surface . Right click on surface and press

“Hide/Show”. The surface, including also the colors from step 4, is hidden now.

(b) Load binary image for cellular structure of interest, e.g. cytoplasm. This can be done

via the button “View the Mayavi pipeline” on the left. Go to Mayavi Scene 1 and then

to the image which was used for the background (here the indexed color image). Via

the timestep bar on the right one can scroll through the images, if they are named

properly.

(c) Define cell type for the structure chosen in the previous step, e.g. the cytoplasm.

In the left part of the main window the picture with the white cytoplasm and black

background is shown. Go to the menu bar and choose Actions -> Define cell types.

Then go to the Actions menu on the right and define the cell type. In this case you

name it “B” (by default subvalues are labeled with “A”; the next defined cell type would

be “B”, then “C” and so on) and press execute (Figure 14). All subcompartments which

contain white pixels will now acquire the assignment “B”. It is possible to change these

default names by subclassing the GUI application (this is beyond the scope of this

document).

(d) Repeat steps 5b and 5c for all other cellular structures of interests,

(e) Display the cell property of interest together with cellular structures: Go again to

Mayavi Scene 1 -> VTK Data -> Colors and legends -> surface, right click surface

and press “Hide/Show”. The surface including the colors representing the cell property

will be displayed again. With a left click on “Surface” and selecting “Actor” on the

right one can make modifications like changing the opacity of the surface. This option

is convenient in our case since via reducing the opacity of the surface one can overlay

the surface with the binary masks to get a better impression of the localization of the

subcompartments (Figure 15).

1 Biological background 7

1.1.2 Script

Since STSE allows for Python scripting, it is possible to perform all the steps
described in the previous section by using a Python script.

The script 10_04_20_create_schmoo_data.py1 shows how to automatise the
GUI operations performed with the STSE Compartment Editor.

1.2 Representation and analysis

The digitized tissue is kept in a design called “WalledTissue2D“, being an inter-
nal STSE data structure. This planar 2D grid structure involves less constraints
than the Voronoi 2D mesh used for defining the mesh geometry with the GUI
(described in Section 1.1) and thus allows for more latitude in defining polyg-
onal geometries (e.g. including non-convex ones). It is also possible to keep,
access and edit the physiological information related to subcompartments. This
information can be used to generate different views of the studied object (e.g.
values such as morphogen concentrations, numbers of neighbours, subcompart-
ment areas). These manipulations are realized via Python scripts and may be
used to inspect different properties of the representations.

The examplary analysis of Fus3PP is presented in
10_06_17_analysis_schmoo.py. This file demonstrates common tasks
performed with STSE such as inspecting or editing:

• geometrical properties of the subcompartments/compartments,

• physiological properties of the subcompartments/compartments,

• topological properties of the subcompartments,

• mesh (removing or resizing the subcompartments),

to name just a few.
For the purpose of the Fus3PP gradient example analysis we learn the fol-

lowing (10_06_17_analysis_schmoo.py):

• the distribution of Fus3PP in the cytoplasm along the x-axis in a central
part of the analyzed cell is exponential (Figure 5c),

• the distribution of Fus3PP around the nucleus reaches its maximum in the
point closest to the shmoo tip (Figure 5d),

• the average Fus3PP signal in the nucleus is 64.0 (which is ≈ 25% of max
signal measured in the image),

• the average Fus3PP signal in the cytoplasm is 52.07 (which is ≈ 20% of
max signal measured in the image),

1 to check how to access all files used in this text (and printed with Typewriter font) please
consult Part III of this text.

1 Biological background 8

(a) (b)

(c) (d)

Fig. 5: Fus3PP profiles along the x-axis and around the nucleus. (a) subcom-
partment locations used to distinguish the curves in (c); (b) subcompartment
locations and ψ definition used in (d); (c) Fus3PP profiles along the x-axis; (d)
Fus3PP profiles around the nucleus.

• the ratio of averaged Fus3PP signal in the cytoplasm to nucleus is equal
to 0.81.

In Part II, these data are compared with values computed with ImageJ.

1.3 Modeling

In the following we use the previously acquired quantified and structured data
to create a dynamic model of Fus3PP diffusion. According to the STSE dataflow
paradigm, the mechanistic model of the studied process needs to be formalized.
This is done by first making fundamental statements using natural language

1 Biological background 9

(e.g. by experts in biology) and converting them into a set of ODE equations.
These steps allow for a formal description of the interplay of different actors
(like chemical molecules) and the different cellular compartments with speci-
fied kinetic rules on diffusion, chemical reactions, transport, etc. This formal
description creates a spatial complex dynamic system. The understanding of
such a system profits significantly from the use of computational techniques (e.g.
simulations), since they allow us to to reproduce the system’s kinetics.

For the example of Fus3PP, diffusion the following mechanism is proposed
by biologists [9]:

• Fus3 gets double-phosphorylated by Ste7 at the scaffolded MAPK cascade
now located at the shmoo tip and is released to the cytoplasm,

• Fus3PP is diffusing freely in the cytoplasm,

• Fus3PP gets dephosphorylated while diffusing,

• Fus3PP requires active transport to enter the nucleus.

As in the previous sections, we focus on the properties of the Fus3PP gradient.
Therefore we exclude processes such as i) mechanisms of the stimulation of Fus3
(i.e. signaling via Ste7) and ii) different mechanisms allowing Fus3PP to enter
the nucleus. The formulation of the kinetic model of Fus3PP is now defined as
follows:

• Fus3PP is appearing in the shmoo tip compartment,

• Fus3PP is diffusing freely in the cytoplasm compartment,

• Fus3PP gets dephosphorylated while diffusing,

• Fus3PP is unable to cross the cellular / nuclear membrane compartments.

With this model we are able to verify whether it is possible to reproduce the
qualitative properties of the Fus3PP gradient observed in the digitized images.
For this purpose the model is translated into the following system of differential
equations (for each subcompartment i we will have one equation describing the
changes of Fus3PP concentration)2:

∂FUS3P P
i

∂t = −
�

n∈Ni

Si→n
Vi

γFUS3P P

�
FUS3PP

i − FUS3PP
n

�
i→n

[n ∈ A, B] +
+αFUS3P P [i ∈ B]− βFUS3P P FUS3PP

i

where:

• FUS3PP
i is the concentration of Fus3PP in the subcompartment i,

• γFUS3P P is the diffusion constant for Fus3PP,
2 Before studying the equation below it is suggested to check for the definition of function

[] : ψ → {0, 1}.

1 Biological background 10

• αFUS3P P is the rate of Fus3PP release in the shmoo tip,

• βFUS3P P is the rate constant of Fus3PP dephosphorylation,

• Si→n is the area of contact surface between subcompartments i and n,

• Vi is the volume of subcompartment i,

• i ∈ A / i ∈ B if i belongs to cytoplasm / shmoo tip compartment,

• Ni is a set of neighbour subcompartments for subcompartment i,

• [ψ] =

�
1 if ψ is True
0 otherwise

, (e.g. [n ∈ A ∪B] evaluates to 1 when n is ele-

ment of A or B) [6, 7].

To complete the model it is required to define the parameters (αFus3, βFus3, γFus3)
and the initial conditions. All values can be estimated from the literature or
chosen arbitrarily. Additionally, initial conditions can be acquired from the
digitization step of the image data. Since we focus on the illustration of the
software functioning, for the sake of simplicity in the running example we use
arbitrary parameter sets and initial conditions.

The ODE system then becomes encoded by the modeler in Python language.
At this stage STSE does not provide automatic support for such an operation.
The examples available with this document and with STSE sources show an
exemplification and introduce the methodology and good coding practice.

For the running example an implementation of the Fus3PP model is provided
in 10_06_22_diffusion_schmoo.py.

Here it is assumed that (αFus3, βFus3, γFus3) = (0.1, 0.1, 100) and the initial
concentration of Fus3PP in every subcompartment is equal to 0. An animation
showing the kinetics of Fus3PP distribution obtained with the implemented
model is available as supplementary file fus3_diffusion1.avi.

Simulations in STSE can be used e.g. to estimate the values of Fus3PP model
parameters based on the image data. The scenario of such a study could look as
follows (this is an adaptation of a common technique called parameter fitting):

1. Prepare a set of different tuples of parameters:

S = {(αFus3, βFus3, γFus3), (αFus3, βFus3, γFus3)�, ...}

2. For every element s ∈ S run the simulation to obtain the steady state. Let
Fs describe the distribution of Fus3PP for parameter set s in the steady
state.

3. Lets denote F̄s the normalized distribution of Fs and F̄ the normalized
distribution of Fus3PP obtained from the original image (normalization
means scaling of the values for Fus3PP so they belong to the segment
[0, 1]).

1 Biological background 11

(a) (b)

Fig. 6: Steady state distributions of Fus3PP for two different parameter sets
(αFus3, βFus3, γFus3): (a) (0.1, 0.1, 100), (b) (0.1, 0.1, 50). We observe that the
gradients have different slopes, which is due to the difference in the diffusion
constant γFus3. To visualize Fus3PP concentrations, a colormap is used where
blue depicts low values and red depicts high values.

4. The most plausible set of parameters would be the one minimizing the
difference

��F̄s − F̄
��

For example the steady state concentrations F(0.01,0.001,100) and F(0.01,0.001,50)

for two different simulations are presented in Figure 6. An animation showing
the kinetics of Fus3PP evolution for the steady state F(0.01,0.001,100) is shown
in supplementary file fus3_diffusion2.avi. This simulation differs by chang-
ing the model property γFUS3 from 50 to 100. For further illustration Fig-
ure 7 presents the difference between F̄(0.01,0.001,50) and F̄ (generated with
10_07_01_compare_fus3_distributions.py). As mentioned in the algorithm
description above this difference can be used to discriminate between parameter
sets.

The running example model yields the highest error in the nuclear com-
partment. This is consistent with our expectations: the test data set images
suggest that Fus3PP is present in the nuclear compartment (Figure 4), but in
the specification of the model we skipped the mechanism of Fus3PP transport
via membranes, which results in the Fus3PP concentration in the nuclear com-
partment being equal to 0. Therefore for any parameter set the concentration
of Fus3PP in the nuclear compartment will be different from the test data set.
To correct this property, the model should be extended by an assumption of
Fus3PP transport via the nuclear membrane.

12

(a) (b)

Fig. 7: Difference of Fus3PP concentration between F̄(0.01,0.001,50) and F̄ (which
approximates the error). (a) shows an E =

��F̄(0.01,0.001,50) − F̄
�� (the overall

error did not exceed 20% percent) (b) shows the E/max(E) (when 100% of
error was observed in the center; it is important to note, that the model did
not allow the Fus3PP to enter the nucleus compartment). To visualize E, a
colormap is used where blue depicts low values and red high ones.

Part II. Comparison of STSE with other

tools

2 Introduction

A variety of image processing-, analysis- or modeling-packages already exist,
either commercial or open source. In the following we compare the STSE mod-
ules to selected tools: ImageJ [1] and MesoRD [4]. The first steps of the
STSE workflow (digitization, representation and analysis) are demonstrated in
comparison with ImageJ, and the modeling module is compared to the MesoRD.

3 Digitization

By the process of digitization we mean the generation of a digital data struc-
ture, allowing for efficient analysis, representation and modeling. The classical
approach is to decompose the microscopy image into physiologically distinguish-
able compartments (e.g. nucleus, cytoplasm, etc.) which is called image seg-
mentation [3, 14, 8]. Various algorithms for segmentation already exist and the
choice of the optimal algorithm depends on the structure of the image and of
the objects of the interest.

In STSE there is no segmentation algorithm implemented. The user needs
to provide binary masks created with 3rd party software, such as e.g. ImageJ.

4 Representation and analysis 13

(a) (b)

Fig. 8: ImageJ workflow images. (a) Binary mask for the cytoplasm (b) distri-
bution of Fus3PP inside the cytoplasm.

The preparation of binary masks is beyond the scope of this text.

4 Representation and analysis

In this section we compare STSE with ImageJ in the procedures for image
representation and analysis. Once again we exemplarily use the distribution of
Fus3PP. The procedure of preparing the data in STSE is covered in Section 1.1
and the actual analysis is presented in Section 1.2.

4.1 Task: Calculate the cytoplasm / nucleus ratio of the

Fus3PP signal in yeast

4.1.1 ImageJ

In ImageJ the procedure would be to determine the average concentration of
Fus3PP in the cytoplasm as well as in the nucleus and then to calculate the
ratio manually. The average Fus3PP signal in the nucleus is 64.0, and the
average Fus3PP signal in the cytoplasm is 51.27, though the ratio between these
values being equal 0.801. A detailed description of the procedure with ImageJ
is presented in Algorithm 2.

4.1.2 STSE

To calculate the cytoplasm/nucleus ratio in STSE we use a Python script which
automatically performs the digitization step described in 1.1. As it has been
already summarized for STSE, the average Fus3PP signal in the cytoplasm is
52.07, the average Fus3PP signal in the nucleus is 64.0, and so the ratio between
these values is equal to 0.81.

4 Representation and analysis 14

Algorithm 2 ImageJ procedure to calculate the cytoplasm / nucleus ratio of
the Fus3PP signal

1. Load the binary masks for the cell membrane and for the nucleus into ImageJ. The images can

be seen in Figure 2c (schmoo_02.png) and 2b (schmoo_01.png).

2. Use the wand (tracing) tool to select the cell membrane as well as the nuclear membrane and

store both selections in the ROI manager.

3. Determine the concentration of the protein in the cytoplasm via:

(a) Go to the image of the cell membrane (Fig. 2c), choose the selection for the cell membrane

from the ROI manager and press Edit -> clear outside in the menu bar.

(b) Go to the image of the cell membrane (Fig. 2c), choose the selection for the nucleus from

the ROI manager and press Edit -> clear in the menu bar.

(c) Steps 3a and 3b result in picture 8a.

(d) Load the indexed color image from Fig. 4a (schmoo_05.png) into ImageJ and combine it

with Fig. 8a by using Process -> ImageCalculator. Choose Operation: “Max” and define

Image1 and Image2 as Fig. 4a and Fig. 8a, respectively. The result can be seen in Fig.

8b.

(e) The measurement will be performed by using a threshold. Therefore go to Analyze -> Set

Measurement and check “Limit to Threshold”.

(f) Change the image type to 8-bit via Image -> Type set to 8-bit.

(g) Go to Image->Adjust->Threshold. Set the lower threshold to 0 and the upper threshold

to 254, which means that every pixel of the image will be included into the measurement,

which is not completely white and therefore not completely saturated.

(h) Analyze -> Measure calculates the average pixel intensity in the cytoplasm. The cytoplasm

has an area of 62640 pixels with 51.27 average pixel intensity.

4. Determine concentration of the protein in the nucleus via:

(a) Use the selection of the nuclear membrane from step 2 and load it into picture 4a.

(b) Analyze->Measure calculates the average pixel intensity in the nucleus. The nucleus has

an area of 4598 pixels with an average mean intensity of 64.0 .

5. Manual calculation of the ratio between of the cytoplasmic and nuclear concentrations results in

0.801.

4 Representation and analysis 15

4.1.3 Comparison

Both tools allow us to compute the ratio between the Fus3PP signal in the
cytoplasm and the nucleus. The value obtained by ImageJ is exact, since ImageJ
operates on pixels. STSE provides an approximation, since it uses abstract
subcompartments to group pixels (e.g. as a consequence some pixels belonging
to nuclear compartment inputed their value to cytoplasm subcompartments).
The relative approximation error in our example is (0.81− 0.801)/0.801 ≈ 1%.

The precision is regulated in STSE by decreasing of the subcompartment
size. This increase in precision induces slower execution of the modeling rou-
tines. It is a choice of modeler to prepare the grid in such a way that both, the
precision and speed of modeling routines will be optimal.

STSE allows for automatisation of such a measurements (via Python). In
ImageJ this requires the usage of Macros, Plugins and Scripts (via Java-like,
Java and JavaScript). Binary masks can be used for automatization in STSE.
Contrary, they need to be pre-processed in ImageJ.

Due to the current implementation, it is difficult to deal with non-coherent
selections in ImageJ (i.e. selections of two or more separated regions). As a
consequence, writing a Plugin or Script to deal with the measurements of the
signal in compartments which are not coherent (e.g. cells often have multiple
separated mitochondria) might be currently not possible. STSE does not suffer
from this effect.

4.2 Task: show a gradient curve for Fus3PP throughout the

cell

4.2.1 ImageJ

In ImageJ this can be done by the following procedure:

1. Load the image schmoo_05.png into ImageJ.

2. Choose a straight line selection through the center of the cell.

3. Go to Analyze->Plot Profile, which will open 2 new windows showing the
plot profile ands the intensities of each pixel along the line.

The image including the selection, the line profile and part of a table with the
intensities of pixels along the line in table form is shown in Figure 9.

ImageJ offers also the feature of using a rectangular selection and plotingf
the profile of the average pixel intensity of each vertical line along the hori-
zontal distance of the selection. In Figure 10 we show the result of a possible
rectangular selection. With this procedure one can capture some of the spatial
information, but because of the rectangular shape of the selection one either
misses cellular information (if the rectangle is chosen too narrow) or one in-
cludes too much background (if the rectangle is chosen too broad, as in Figure
10).

4 Representation and analysis 16

(a) (b) (c)

Fig. 9: Plot profile with straight line selection. (a) Cell with straight line
selection (b) Plot profile with straight line selection (c) Part of the line profile
in tabular form.

4.2.2 STSE

The profile obtained with STSE is presented in Figure 5. Since STSE is em-
bedded in Python it allows to use many advantageous libraries. In the case of the
running example Scipy is used to prepare the figures (10_06_17_analysis_schmoo.py).
It is also possible to perform more complex analysis e.g. fitting the curves based
on the measured data using Scipy routines (not presented since it is beyond the
scope of this text).

4.2.3 Comparison

Both tools allow for computing the profile plot along the x-axis of the cell (with
STSE approximated as green dots in Figure 5). As stated in Section 4.1.3, the
value obtained by ImageJ is exact whereas STSE provides an approximation,
because it uses abstract subcompartments.

Inspecting of Figure 9b and Figure 5 shows that the exponential decrease
of Fus3PPalong the cell center as well as the increase in the nucleus can be
captured reasonably well with both tools. Nevertheless, if one is interested in
the distribution of Fus3PP over the whole cell, there is no constitutive way to do
so in ImageJ (however plugins allow to perform similar actions). The illustrated
example of using a rectangular selection shows that this method is suitable only
for rectangular cells. If the cellular shape is not, by chance, rectangular, the
measurement error is high. Furthermore, in STSE it is possible to plot various
profiles for any selected subcompartments.

In ImageJ basic analysis is performed via the GUI, but an extensive analysis
again requires the usage of Macros, Plugins or Scripts (via Java-like, Java or

5 Modeling 17

(a) (b) (c)

Fig. 10: Plot profile with rectangular selection. (a) Cell with rectangular selec-
tion (b) plot profile with rectangular selection (c) part of the rectangular profile
in tabular form.

JavaScript). STSE requires using Python in both basic and extensive analy-
sis. In the latter case the automatisation of tasks via Python allows for faster
implementation.

Additionally, due to the current implementation of ImageJ, it is difficult
to deal with non-coherent selections in ImageJ (i.e. selections of two or more
separated regions). As a consequence, writing as Plugin / Script to deal with
the measurements of the signal in compartments which are not coherent (e.g.
cells often have multiple separated mitochondria) might be currently impossible.
STSE does not suffer for this effect.

5 Modeling

Over the last years numerous modeling tools were developed e.g. MesoRD,
Matlab, MCell or VCell to name just a few of them (for a short review please
see [10]). These software packages differ significantly in terms of the algorithms
used or the specific purpose they were designed for. To keep the presentation of
the STSE package simple we decided to chose MesoRD [4] as a reference since
corresponds the best to the STSE software. In the following we list explicitly
the differences between the modeling strategies of both software packages.

5.1 2D versus 3D modeling

One of the main differences between MesoRD and STSE is that subcompart-
ments in MesoRD are 3D entities (i.e. volumes and therefore subvolumes)
whereas subcompartments in STSE are 2D entities (i.e. surfaces). However
it is possible to use STSE subcompartments as abstract 3D entities in the simu-

5 Modeling 18

lations (as presented in the running example in 1.3). The main reasons for this
design choice in STSE are:

1. The GUI editing, representing or inspecting of 2D meshes is simpler than
for 3D meshes. One of the goals of STSE is to allow the user to perform
the GUI mesh editing operations, therefore we did not want to clutter the
interface.

2. STSE is aimed to work also as an abstract tool for “sketching” the dynam-
ics of spatial complex systems, without any real microscopic images (this
is not covered in this document). In this mode it is useful to prepare the
meshes as well as to perform spatial simulations. To keep these procedures
simple the 2D approach is in our opinion a better design choice.

3. In terms of quantitative modeling 2D data preprocessing is far less com-
plex than dealing with 3D stacks (e.g. the non-linear, medium dependent,
signal attenuation in the z-axis of the 3D stack, data structures and al-
gorithms required to analyze 3D data, size of data). On the other hand,
STSE is well suited to perform the spatial simulations in a single 3D layer,
which solves the preprocessing issues. Additionally, modeling of a single
3D layer is useful in many biological problems (e.g. [11, 12]), therefore in
our opinion STSE is still useful despite its 3D limitations.

4. Finally it is the choice of the modeler to implicitly model 3D with 2D (e.g.
diffusion constants can be recalculated, processes can be approximated).
It is demonstrated in the running example.

2D datastructure allow us to use microscopic image data to compare with the
simulation results at different time points, which is a major advantage of STSE
workflow. This is not possible in MesoRD.

5.2 Simulation strategy

For simulations MesoRD uses an algorithm called the Next Subvolume Method
(NSM) to simulate the model stochastically [2], whereas STSE is currently based
on Ordinary Differential Equations (ODEs) and simulates the model determin-
istically. It is important to note, that STSE is not imposing any solver strategy
on the user. In fact, it provides only the datastructure API and examples how
to perform spatial simulations with LSODE library solvers [5]. Therefore the
choice of simulation algorithm and its implementation depends on the user. It
is possible to use stochastic algorithms similar to the NSM within the STSE
environment. Unfortunately, there are currently neither examples nor tutorials
how to prepare such a simulation.

5.3 Compartment geometry

In MesoRD geometry is defined with MesoRD extension to Systems Biology
Markup Language SBML standard. It is based on the constructive solid ge-
ometry format (CSG) [13], by applying combination operations on simple 3D

19

objects. In STSE, one gets the compartment geometry based on the microscopy
images by using binary masks or specifies it with the GUI.

5.4 Subcompartment geometry

In MesoRD subcompartments must be cubes of the same size. STSE allows to
use default equal size, hexagonal subcompartments. Later, the hexagonal lattice
can be altered via GUI or Python script to adjust individual subcompartment
properties like size and shape. While using GUI each subcompartment shape is
a 2D convex polygon.

5.5 Initial conditions

The major advantage of STSE in comparison to MesoRD is, that the output of
the digitization process can be directly used as an input or comparison for the
modeling process. In MesoRD the user has to define the initial concentrations for
each cellular compartment with information available in the literature. STSE
has the major benefit that on the one hand, data can be directly used from
previously imported data images and on the other hand, concentrations for even
individual subcompartment can be defined with a Python script. Therefore it
is possible to start the simulation with a gradient in one cellular compartment,
which is not possible in MesoRD. It is described in detail in section 1.3.

5.6 Kinetics specification

The input for the kinetic modeling in MesoRD is based on the SBML, although
with some minor changes to make it applicable for simulations in space. In
STSE the kinetics of the system needs to be specified by the implementation in
Python. In MesoRD as well as in STSE one has to define the kinetics for dif-
fusion and chemical reactions. While MesoRD just includes chemical reactions
and diffusion, in STSE also further mechanisms like special rules or directed
transport are possible (the modeler has the freedom to define the Python code
to specify any dynamics).

Part III. Installation issues and SBOS

6 Dependencies

STSE is freely available to the research community from http://www.stse-software.org/
Since the software uses third party components, its functioning depends on the
availability of the following libraries and applications for the given platform:

• Python (http://www.Python.org/),

• Openalea (http://openalea.gforge.inria.fr/),

7 Layout of files and data used in the text 20

• Mayavi2 (http://code.enthought.com/projects/mayavi/),

• Qhull (http://www.qhull.org/),

• NetworkX (http://networkx.lanl.gov/).

The framework is tested on Linux, but in principle it is possible to run the
software on any platform in which these dependencies are combined.

7 Layout of files and data used in the text

All files used in this text are accessible via SVN from the open source community
developer site: http://sourceforge.net The source files used in the text (e.g.
10_06_17_analysis_schmoo.py) are placed in:

http://stse.svn.sourceforge.net/svnroot/stse/trunk/src/stse/examples/

The image data used in the text (e.g. schmoo_01.png) is placed in:

http://stse.svn.sourceforge.net/svnroot/stse/trunk/data/10-04-27-schmoo/

8 Running STSE from SB.OS

To test the software without labored installation procedure (described on the
project website), it is recommended to use the software directly from the live
DVD Linux distribution, SB.OS (http://www.sbos.eu/), which comes with
a comprehensive list of other systems biology software. Running SB.OS is pos-
sible by booting up the computer with SB.OS DVD in the drive or via Virtual
Machine (e.g. using software such as VMWare).

Inside the file system of SB.OS the source files used in the text (e.g. 10_06_17_/
analysis_schmoo.py) are placed in the folder:

/usr/local/stse/src/stse/examples/

The running example image data used in the text (e.g. schmoo_01.png) are
placed in the folder:

/usr/local/stse/data/10-04-27-schmoo/

To test the examples used in the text:

1. After starting SB.OS it is recommended to update the STSE software be-
fore usage (a network connection is required for this operation. It ensures
that the user has access to the newest version of the software and is help-
ful in case of reporting bugs). To perform this action one can use Menu:
Applications / Systems Biology / STSE / STSE-Update.

8 Running STSE from SB.OS 21

2. To test various source codes from the text use Menu: Applications /
Systems Biology / STSE / STSE-iPython3. Afterwards, when the con-
sole appears, one can change the directory to the folder with examples
and run one of them by issuing the following commands (e.g. to run
10_06_17_analysis_schmoo.py):
cd /usr/local/stse/src/stse/examples/

run 10_06_17_analysis_schmoo.py

3. To test algorithm 1 use STSE GUI application Compartment Editor from
Menu: Applications / Systems Biology / STSE / STSE-CE. The example
data for the application are placed in:
/usr/local/stse/data/10-04-27-schmoo/

References

[1] MD Abramoff, PJ Magalhaes, and SJ. Ram. Image processing with imagej.
Biophotonics International, 11:36–42, 2004.

[2] J. Elf and M. Ehrenberg. Spontaneous separation of bi-stable biochemical
systems into spatial domains of opposite phases. Syst Biol (Stevenage),
1(2):230–236, Dec 2004.

[3] Nicholas Hamilton. Quantification and its applications in fluorescent mi-
croscopy imaging. Traffic, 10(8):951–961, Aug 2009.

[4] Johan Hattne, David Fange, and Johan Elf. Stochastic reaction-diffusion
simulation with mesord. Bioinformatics, 21(12):2923–2924, Jun 2005.

[5] A. C. Hindmarsh. ODEPACK, A Systematized Collection of ODE Solvers
, R. S. Stepleman et al. (eds.), North-Holland, Amsterdam, (vol. 1 of),
pp. 55-64., volume 1 of IMACS Transactions on Scientific Computation.
North-Holland Amsterdam, 1983.

[6] Kenneth E. Iverson. A Programming Language. John Wiley & Sons.

[7] Donald E. Knuth. Two notes on notation. Am. Math. Monthly, 99(5):403–
422, May 1992.

[8] Vebjorn Ljosa and Anne E Carpenter. Introduction to the quantitative
analysis of two-dimensional fluorescence microscopy images for cell-based
screening. PLoS Comput Biol, 5(12):e1000603, Dec 2009.

3 To run the examples it is recommended to use iPython shell with special flags (this is
due to the threading issues in different libraries used by STSE; detailed explanation is beyond
the scope of this text). To use the full capabilities of STSE Compartment Editor simply run
iPython with the flag -wthread.

8 Running STSE from SB.OS 22

[9] C I Maeder, M A Hink, A Kinkhabwala, R Mayr, P I H Bastiaens, and
M Knop. Spatial regulation of fus3 map kinase activity through a reaction-
diffusion mechanism in yeast pheromone signalling. Nature Cell Biology,
9:1319–1326, 2007.

[10] Haluk Resat, Linda Petzold, and Michel F Pettigrew. Kinetic modeling of
biological systems. Methods Mol Biol, 541:311–335, 2009.

[11] Richard Smith. Simulation Models of Phyllotaxis and Morphogenesis in
Plants. PhD thesis, August 2007.

[12] Szymon Stoma, Mikael Lucas, Jérôme Chopard, Marianne Schaedel, Jan
Traas, and Christophe Godin. Flux-based transport enhancement as a
plausible unifying mechanism for auxin transport in meristem development.
PLoS Comput Biol, 4(10):e1000207+, October 2008.

[13] H. Wang, R. J. Jaszczak, and R. E. Coleman. A new composite model of
objects for monte carlo simulation of radiological imaging. Phys Med Biol,
38(9):1235–1262, Sep 1993.

[14] Roy Wollman and Nico Stuurman. High throughput microscopy: from raw
images to discoveries. J Cell Sci, 120(Pt 21):3715–3722, Nov 2007.

23

Part IV. Screenshots for STSE image

digitization

Fig. 11: Fus3PP image (schmoo_05.png) loaded into STSE Compartment Edi-
tor.

24

Fig. 13: Calculate expression for Fus3PP inside STSE Compartment Editor.

Fig. 12: Compartment geometry edition with STSE Compartment Editor.

25

Fig. 14: Define cell type (here: cytoplasm) in STSE Compartment Editor.

Fig. 15: Fus3PP signal intensity acquired into STSE data structure with cell
types set in previous steps.

